"Varietas delectat", avagy
"a változatosság gyönyörködtet", szól az idézet
Cicerótól, amely tömören kifejezi a sokféleség, a változatosság, a gazdagság iránti ösztönös csodálatunkat és igényünket. Az élővilágban megfigyelhető sokféleség (diverzitás) leírása és okainak felfedése a biológiai tudományok egyik legfontosabb tárgya volt mindig is, de a puszta kíváncsiság kielégítése mellett a XX. század óta tapasztalt biodiverzitási krízis, vagyis az élő természet sokféleségének drasztikus csökkenése mint sürgető és elhárítandó veszély is motiválja a kutatókat. Az esetek többségében igaznak tekinthető, hogy minél diverzebb egy ökoszisztéma, hosszútávon annál megbízhatóbb forrása a társadalom számára hasznosíthlató természeti javaknak (
Hooper et al. 2005). Például egy fajgazdag rét összességében több hasznot jelenthet egy falu számára, mint egy fajszegény, ha figyelembe vesszük a széna minőségét, a réten szedhető gyógynövényeket, a talaj víz- és tápanyagforgalmában játszott szerepét, az esztétikumot, stb. Nem csoda hát, hogy az ökológusok egy jelentős részét foglalkoztatják a fajgazdagság változatosságával kapcsolatos kérdések, mint például: mi az oka, hogy egyik közösség vagy élőhely sok, a másik kevés fajnak ad otthont? Mi magyarázza egyes élőhelyek kiugróan magas fajgazdagságát? Hogyan és miért változik a sokféleség valamely környezeti vagy zavarási grádiens mentén?
|
A cserjék, facsoportok jelenléte növeli a gyepek fajgazdagságát (Cserhát) |
A Fehér-Kárpátok félszáraz gyepjei a világ legfajgazdagabb növényközösségei közé tartoznak.
Wilson és mtsai. (2012) cikke szerint ebben a vegetációban több "fajgazdagsági világrekordot" is detektáltak szűk térléptékben: 40 négyzetcentiméteres mintaterületen 13, 0,25 nm-en 44, 16 nm-en 105, 25 nm-en 116, 49 nm-en 131 fajt is kimutattak rajtuk (sőt, azóta újabb rekordokat jegyeztek fel ugyanott, ld.
Chytrý és mtsai. 2015). A
2012-es tartui IAVS szimpóziumon hallottam
Milan Chytrý "Species-rich grasslands in Central Europe: search for the causes of the world record species richness" című előadását, melynek tartalma nem sokkal később cikkben is megjelent (
Michalcová és mtsai. 2014). A többségükben cseh kutatók arra vonatkozó hipotéziseket teszteltek, hogy mi okozza a szokatlanul sok növényfaj kis területen való együttélését. Lehetségesnek látták, hogy táji szinten (nagyobb térléptékben) olyan magas a gyepi fajok száma, hogy a lokális (kis léptékű) közösségekbe is sok jut be. Ez nem más, mint a
fajkészlet-hipotézis tesztelése. Egy közösség fajkészletét azok a fajok alkotják, amelyek potenciálisan képesek benne megtelepedni, függetlenül attól, hogy valójában jelen vannak-e benne vagy sem. A fajkészlet-hipotézis azt feltételezi, hogy a lokális közösségek faji összetétele és fajgazdagsága attól függ, hogy mennyi és milyen, azonos élőhelyen élő fajok vannak jelen tágabb térléptékben ("regionálisan"), hiszen az új fajok betelepedése csak a környező hasonló közösségekből történhet. (A témában ajánlom
Cornell & Harrison (2014) cikkét.) Szintén potenciális magyarázatnak látták azt, hogy a kiemelkedő fajszám a térség többi élőhelyének jellemzője, és az érintkező vegetációtípusokból olyan sok faj képes bejutni a gyepekbe, hogy valójában a nem gyepi fajok emelik magasra a gyepek fajszámát. Ez a feltevés a
térbeli tömeghatás szerepét hangsúlyozza: a környező vegetációtípusok annyira fajgazdagok, hogy több faj forráspopulációjaként szolgálnak a (többé-kevésbé véletlenszerű) gyepi megtelepedéseikhez. A harmadik lehetséges magyarázat a
sziget-biogeográfia elméletén (
MacArthur & Wilson 1967) nyugszik, amely kimondja, hogy a nagyobb szigetek (nem csak geográfiai, hanem élőhelyszigetekre is érvényes) több faj fenntartását teszik lehetővé, köszönhetően annak, hogy minden faj állománya nagyobb egyedszámot tud elérni, amelyeket így kevésbé veszélyeztetik a véletlenszerű kihalást okozó események. Ebből az következik, hogy ha a tágabb térségben nagyobb a gyepek területe, akkor több gyepi faj hosszútávú fennmaradása lehetséges. A fajok a gyepterületen belül bárhová eljuthatnak, ha erre elegendő idő áll rendelkezésre, vagyis ha a gyep elég sokáig változatlanul fennmarad. A negyedik hipotézisük a
táji heterogenitással magyarázta a fajgazdagságot: mozaikos tájban a különböző élőhelyfoltokat preferáló, onnan térben korlátozottan terjedő populációkból könnyebben kolonizálják az egyéb folttípusokat a fajok, mint egy homogén tájban. Mindezek mellett különböző
környezeti változó értékeit és eloszlását is vizsgálták a területen, ugyanis ismert, hogy a szélsőséges környezeti jelenségek és kezelési módok egyes fajok kihalásához vezetnek, míg a mérsékeltebb, időben enyhén fluktuáló hatások segítenek a különböző igényű fajok együttélésének fenntartásában. A további részletek ismertetése nélkül a kutatás nagyon tanulságos eredményének tartom, hogy a szerzők nem tudtak megjelölni olyan tényezőt, amely egymagában megmagyarázta volna a rendkívüli fajgazdagságot. A gyepi élőhelyek nagy területe, a környezeti szélsőségek hiánya, a mozaikos tájszerkezet és a régóta tartó extenzív gyepgazdálkodás együttesen járultak hozzá ahhoz, hogy a Fehér-Kárpátok gyepjein ennyi növényfaj él együtt kis térléptékben. Ennek kapcsán négy dologról szeretnék ejteni néhány gondolatot:
(1)
Ha nem számolunk a fajképződés jelenségével*, akkor úgy tűnik, a fajgazdagságot nem "csinálják", hanem "megengedik" egyes tényezők, vagyis nem okai vannak, hanem feltételei. A különbség árnyalatnyi, de a kutatási kérdésről való gondolkodásunkat és a módszerválasztásunkat befolyásolhatja. Az ok és a feltétel különbségét könnyen beláthatjuk, ha a
Liebig-féle minimum elvre gondolunk. Ez azt mondja ki, hogy a növekedést mindig az a tényező korlátozza, amely a szükségletekhez képest a legkisebb mértékben van jelen. Vagyis, ha egy növényfaj 5 és 6 közötti pH-jú talajon és 7 és 8 °C éves átlaghőmérsékleten érzi jól magát, akkor hiába lesz a talaj kémhatása 5,4 pH, ha az átlag hőmérséklet 5 °C, akkor nem fog tudni szaporodni. Minden egyes faj számára megvannak azok a tényezők, amelyek az adott helyen való megtelepedését és fennmaradását lehetővé teszik (feltételek!). Ezek a tényezők nem csak a környezeti változók optimális értékeit, hanem a megtelepedést és a többi fajjal való együttélést biztosító körülményeket is magukban foglalják (ld. később). Ha ezek közül egy nem teljesül, akkor a faj nem lesz jelen az adott helyen, hiába teljesül a többi. A fajszám sok-sok ilyen feltételrendszer szuperpozíciója, vagyis annak az összege, ahány faj esetében teljesül minden feltétel. Amikor diverzitáskülönbséget akarunk megmagyarázni, például összehasonlítjuk két terület fajgazdagságát, akkor végig kell előtte gondolnunk azokat a körülményeket, amelyek alakítják a területek fajszámát. Az, hogy az egyik terület fajszáma "szignifikánsan" különbözik a másiktól, mert ezt dobta ki egy
kétmintás t-teszt, nem rendelkezik sok biológiai vonatkozással, ha nem tisztáztuk előtte, mit várunk a fajgazdagságot alakító mechanizmusok ismeretében, vagy ha a különbség kimutatását nem követi az okok felfedésére tett próbálkozás. A fajkészlet mérete, a jellemző környezeti szűrők, a terület biogeográfiája, a mintavételi sajátosságok ismeretében jogosan várjuk-e, hogy ugyanakkora legyen a két terület fajszáma? Melyek azok a mechanizmusok, amelyek fajszámot alakító hatására kíváncsiak vagyunk, és melyeket szeretnénk eltüntetni valamilyen adattranszformációval, hogy ne zavarják a többi hatás vizsgálatát? Nem ugyanazzal a biológiai jelentéssel bír, ha az egyik közösségben a 10 fajos fajkészletből mind jelen van, vagy ha a lehetséges 100 fajból van jelen 10. Szintén másképp kell gondolkodnunk, ha az egyik terület tízszer akkora, mint a másik. A korszerű ökológia abba az irányba halad, hogy az általunk vizsgált rendszert befolyásoló mechanizmusok ismeretében építsünk modelleket, amelyek predikcióit a tapasztalati adatokkal összevetve következtessünk a mechanizmusok valódi szerepére. Ebben a szellemben számos jó cikk és könyv érhető el. Megemlíteném a magyar szerzők által írt
Pásztor L., Botta-Dukát Z., Magyar G., Czárán T., Meszéna G.: "Theory-based Ecology: A Darwinian approach" című egyetemi tankönyvet. A közösségszerveződésben általános és alapvető folyamatokat
Vellend (2010) vette sorra.
*
Ha a fajgazdagság-különbség kialakulásában a fajképződés is jelentős szerepet játszik, akkor szemantikailag helyesebbnek tűnik okokról, mint feltételekről beszélni. Például ha van két terület, az egyiken az élőlények jobban ki vannak téve valamilyen mutációs faktornak, amely a genetikai állomány gyorsabb változását eredményezi, akkor azon nagyobb mérvű lesz a fajképződés, mint a másikon, és ezért a fajszámban is lehet különbség. Itt véleményem szerint inkább "okozza" valami a fajszámkülönbséget, mint "megengedi".
(2)
Ha a fajszámnak nem okai, hanem feltételei vannak, akkor minél több a feltétel és minél kiegyenlítettebb a hatásuk, annál nehezebb őket kimutatni a hagyományos regressziós, varianciamagyarázó és korrelációs módszerekkel. Mutatok egy szimulációs példát. Van 100 közösségünk, amelyek fajkészletét ugyanaz a 100 faj alkotja, a fajok előfordulását
K környezeti változó szabja meg. Igen ám, de minden faj csak
K egy részhalmazára,
P db változóra érzékeny. Minden változó minden közösségben 0 és 1 között felvesz egy értéket. Egy faj adott közösségben való előfordulása úgy dől el, hogy a számára fontos változók az adott közösségben milyen értéket vesznek fel. Egész pontosan a fontos változók értékeinek a minimuma az a valószínűség, hogy a faj előfordul (vö. Liebig-féle minimumtörvény). Hogy valóban megjelenik-e a faj, azt a véletlen dönti el a fentebbi minimum alapján megadott valószínűség szerint. A szimulációba beépíthető egy olyan elem is, hogy ha a legkisebb mennyiségben jelenlévő változó egy bizonyos határérték alá esik, akkor a faj automatikusan hiányzik, de ez nem sokat változtat a lényegen, csak skálázási kérdés. Jelen esetben legyen 0,3 ez a határérték: vagyis, bármely fontos változó értéke 0,3 alatti, a szóban forgó faj hiányzik az adott közösségben. Miután minden közösségre kiszámoltuk a jelen lévő fajok körét, kiszámoljuk a fajszámokat közösségenként. Mivel a fajszám most véges, elosztjuk a fajszámokat a fajkészlet méretével, így megkapjuk a tapasztalati fajszám és a fajkészlet arányát - nevezzük relatív fajszámnak. Ezután építünk egy
általánosított lineáris modellt (GLM), amelyben a függő változó a relatív fajszám, a magyarázó változók pedig a
K db környezeti változó. Mivel a relatív fajszám egy arány, és számolunk a lehetséges túlszóródással (
overdispersion), a GLM eloszlását kvázi-binomiálisra állítjuk. Végül megnézzük, hogy mely környezeti változóknak lesz "szignifikáns" hatása.
K és
P értékei változtatva többször újrafuttatjuk a szimulációt. A szimulációhoz használt R szkript
megtalálható itt.
Ha
K = 1 és
P = 1, vagyis egyetlen környezeti változó van, akkor annak erősen szignifikáns a hatása.
|
Ha egyetlen környezeti változóra reagál az összes faj, akkor a szoros az összefüggés a változó értékei és a fajszám között |
Minél jobban emelkedik
K és
P (vagyis minél több a környezeti változó, és minél többre reagálnak a fajok), annál gyengébbnek mutatkozik a változók hatása. Ha a változók száma 20, de minden faj csak egyre reagál, már akkor sem szignifikáns minden változó! Az eredmény akkor is ez, ha a változók hatását külön-külön teszteljük, tehát a korrelációik nem kavarnak bele.
|
Ha sok környezeti változó van és a fajok nem ugyanazokra reagálnak, akkor az egyes változók hatása nehezen kimutatható |
glm(formula = SP ~ Kmat, family = quasibinomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.187403 -0.050824 -0.007331 0.043638 0.187568
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.00257 0.14063 -14.240 < 2e-16 ***
Kmat1 0.44263 0.06477 6.834 1.55e-09 ***
Kmat2 0.28016 0.06526 4.293 4.96e-05 ***
Kmat3 0.04149 0.05948 0.698 0.487478
Kmat4 0.08629 0.06203 1.391 0.168087
Kmat5 0.42971 0.06026 7.131 4.19e-10 ***
Kmat6 0.27100 0.05390 5.028 3.03e-06 ***
Kmat7 0.26243 0.05913 4.438 2.91e-05 ***
Kmat8 0.14400 0.05708 2.523 0.013660 *
Kmat9 0.27764 0.06280 4.421 3.10e-05 ***
Kmat10 0.12264 0.05469 2.242 0.027740 *
Kmat11 0.40040 0.06664 6.008 5.45e-08 ***
Kmat12 0.14633 0.05821 2.514 0.013979 *
Kmat13 -0.01322 0.05632 -0.235 0.814998
Kmat14 0.32394 0.05951 5.443 5.72e-07 ***
Kmat15 0.16883 0.06063 2.785 0.006703 **
Kmat16 0.08642 0.06101 1.417 0.160506
Kmat17 0.23433 0.06482 3.615 0.000527 ***
Kmat18 0.12415 0.07598 1.634 0.106251
Kmat19 0.19938 0.06085 3.276 0.001563 **
Kmat20 -0.05382 0.06118 -0.880 0.381610
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for quasibinomial family taken to be 0.006027996)
Null deviance: 2.50718 on 99 degrees of freedom
Residual deviance: 0.47771 on 79 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 3
Nyilván sok volt a leegyszerűsítés a szimulációban, és egyébként is vizsgálati helyzete válogatja, de 20 potenciális környezeti változó nem irreálisan sok a természetben, és egynél jóval többre reagál minden faj. Ez nem meglepetés annak, aki találkozott már hasonló problémával, de mégis akadnak kutatások, amikor láthatóan nem veszik figyelembe.
(3) Ha a fajképződés lehetőségétől eltekintünk, akkor a fentiek összhangban vannak azzal a fogalmi és logikai rendszerrel, amelyet
Juhász-Nagy Pál (1935-1993) 30 éve alkotott meg az
"Egy operatív ökológia hiánya, szükséglete és feladatai" című könyvében. JNP szerint az ökológia
centrális hipotézise [CH], hogy
"bárhol, bármikor, bármilyen populáció a természetben bármilyen mennyiségben megtalálható". Ez nyilvánvalóan hamis (ezt nevezi JNP
centrális ténynek [CT]), és az ökológia
centrális problémája [CP], hogy
"ha a [CH] hamis, akkor adott objektumra adott kikötésekkel milyen mértékben hamis és miért hamis?". A [CH] a fajkészlet-elmélet fogalmait kölcsönvéve azt jelenti, hogy az összes létező faj a világon az összes létező lokális közösség fajkészletéhez hozzátartozik, ugyanis potenciálisan előfordulhat benne. A [CP] pedig azokra a mechanizmusokra kérdez rá, amelyek a [CH]-t addig-addig szigorítják újabb és újabb megkötések hozzáadásával, míg egy el nem utasítható nullhipotézisig nem jutunk. Vagyis: addig-addig kell szűrnünk a kezdeti "pán-fajkészletet", amíg el nem jutunk a fajok egy olyan köréhez, aminél már nem tudjuk jobban közelíteni a közösség tényleges fajösszetételét. A szűrésnek a fajok előfordulását befolyásoló tényezők figyelembevételével kell történnie. Például: egy bükki rét fajkészletének meghatározásakor számolnunk kell azzal, hogy olyan fajnak minimális esélye van benne megtelepedni, amelynek a rá jellemző terjedési távolságon belül nincs szaporodó állománya. Hiába fordul elő egy faj a Kárpátok hegyi rétjein azonos tengerszint feletti magasságban, ha nem jó a terjedőképessége, akkor nincs esélye kolonizálni egy bükki élőhelyet. Így, első körben, azokat a fajokat kizárhatnánk, amelyeknek nincs a Bükk hegységben szaporodó állománya. Ezzel beépítettünk egy szűrőt a nullmodellünkbe: a terjedés korlátozottságát. Ha ettől a nullhipotézis igazzá válna, akkor a réten a környező élőhelyek fajai véletlenszerűen jelennének meg. Minden bizonnyal azonban tovább kell finomítanunk a modellünket egy újabb szűrővel: lehetne ez egy niche-felosztás szerinti szűrő, amely kiiktatná azokat a fajokat, amelyek alapvetően nem fordulnak elő egyes környezeti háttérváltozók olyan értékei által jellemzett gyepekben, mint amivel foglalkoztunk. Nem valószínű például, hogy egy nedves réten szárazsághoz adaptálódott, sziklagyepi fajt találjunk. Ha a megfelelő módon kiválogattuk a környezeti preferenciájukban "odaillő" fajokat, de az új nullhipotézisünk által formalizált modell sem illeszkedik elég jól az adatokra, akkor előfordulhat, hogy a fajok közti kapcsolatokat is figyelembe kellene vennünk. Például előfordulhat, hogy a gyepet uraló fűfaj kiszorítja a hozzá hasonló egyéb füveket, de jól megtűri az alacsonyan kúszó, indás valódi kétszikűeket és a hagymás-gumós egyszikűeket, a fajspecifikus parazitanövénye pedig egyenesen ragaszkodik hozzá... A szűrők működéséről ilyen fokú leegyszerűsítéssel írni nyilván fényévekkel könnyebb, mint egy valós kutatási helyzetben matematikailag kezelhető formába önteni őket. A társulási szabályok vizsgálatának és a szűrők működésének tudtommal első megfogalmazója
Keddy (1992) volt, azóta a téma irodalma hatalmas és gyorsan bővül, a közösségi ökológia egyik legdivatosabb irányzatáról van szó, én is
írtam már erről egy cikkünk kapcsán.
Ebben a pontban több szó esett a fajösszetételről, mint a fajgazdagságról. Azonos fajgazdagságú közösségek lehetnek teljesen más fajkompozíciójúak. A fajgazdagság mégis gyakran szorosan összefügg a fajkompozícióval, tipikusan szűk térléptékben, ahol a fajok közti interakciók megszabják, hogy milyen fajok képesek együtt élni. Például ha a fajkészletet csupa hasonló faj alkotja, akkor szűk térléptékben csak kevés tud együtt élni a köztük fellépő
kompetitív kizárás miatt. De ha a fajkészletben egymástól különböző, eltérő forrásokat használó fajok vannak, akkor azok közül több is tartósan együtt élhet, hiszen nem versengenek egymással.
(4)
A nagy fajgazdagság gyakran azt mutatja, hogy bizonyos szűrők a szokottnál kevésbé korlátozzák a fajok előfordulását, "nem működnek". A fajszegény szituációk, fajhiányok, legalább olyan érdekesek, mint a kiemelkedő fajgazdagságú élőhelyek, mert azok mutatják a centrális hipotézistől való eltérést. A hiányzó fajok vizsgálata az elmúlt években vált divatos kutatási témává, elsősorban a
tartui egyetem kutatóinak munkássága révén. Ők vezették be a sötét diverzitás ('dark diversity', DD) fogalmát, ami alatt azokat a fajokat értik, amelyeknek ott kéne lenniük egy közösségben, tagjai a közösség fajkészletének, de valami miatt még sincsenek jelen. (Rengeteg cikkük jelent meg a témában, de kezdésnek
ezt a blogbejegyzést érdemesebb elolvasni mindnél.) Persze, azt, hogy minek kéne ott lenni, miközben nincs ott, eléggé nehéz meghatározni... A DD mint elmélet számomra is nagyon tetszetős, de a módszertanát még kiforratlannak tartom.
A fentiekben természetesen nem a fajgazdagság megőrzésének fontossága ellen írtam. A fajok védelmének, minél több faj megőrzésének és a fajgazdag közösségek megóvásának és helyreállításának továbbra is a konzerváció elsődleges feladatának kell lennie. Remélem, hogy a fajszegénység és a fajhiányok megítéléséről megosztott gondolataim ezeket a célokat is segíteni fogják.