A fenti mutatók a fajok tömegességeit más és más súllyal veszik figyelembe, így ha eltérő abundanciaeloszlású közösségeket akarunk diverzitásuk szerint sorba rendezni, akkor könnyen egymásnak ellentmondó sorrendeket kaphatunk velük. Elegáns és hasznos eszköz lenne egy olyan index, amely magában foglal egy skálaparamétert, amely változtatásával elérhetők a tömegességek szerinti súlyozás különböző módjai, de a kapott számok logikai rendje mégis érthető marad. Ez válik lehetővé a Rényi-entrópiával, amely a Shannon-entrópia általánosítása. Van egy q paramétere, amelyet változtatva olyan entrópiák számolhatók ki, amelyekben a fajok tömegességei különböző súllyal jutnak érvényre:
qH = 1/(1-q) × ln(Σi piq)
q értéke minimum 0. Ha q = 0, akkor a fajok tömegességei nem számítanak, akár csak a fajszám kiszámolásakor. q = 1-nél, qH -nak határértéke van, amely a Shannon-diverzitással egyenlő. q = 2 esetén pedig az inverz Simpson-index logaritmusát kapjuk. Minél nagyobb a q, annál jobban számítanak a fajok tömegességei közti különbségek. Ha q végtelen, akkor a Rényi-entrópia a legtömegesebb faj relatív abundanciáját tükrözi. A Rényi-entrópiát úgy szokás használni, hogy q különböző értékeire (de minimum a nevezetesekre: 0, 1, 2) kiszámoljuk, és ábrázoljuk qH-t q függvényeként. Két közösség közül az a diverzebb, amelyiknek magasabban fut a görbéje. Ha a két görbe metszi egymást, akkor a közösségek nem rendezhetők diverzitásuk szerint.
Ez mind szép és jó, de ha megtudjuk, hogy egy közösségre 3H = 2,1, az intuitíve nem sok információt jelent, kell némi gyakorlat vagy töprengés, hogy tudjuk, igazából milyen diverzitású közösséget kell magunk elé képzelnünk. Sajnos az entrópiák nem lineárisan változnak az intuitív diverzitásfogalmunkkal. Ezt az alábbi példával tehetjük nyilvánvalóvá. Van egy közösségünk, amelyet 3 egyformán tömeges faj alkot. Ilyenkor qH = 1,099 bármely q-ra. Tegyünk hozzá még 3, ugyanilyen tömeges fajt ehhez a közösséghez! (Figyeljük meg, hogy ilyenkor a relatív gyakoriságok a felükre csökkennek, hiszen a fajok abszolút egyedszámai nem változnak, míg az összegyedszám kétszeresére nő!) Az eredmény qH = 1,792 bármely q-ra. Hiába kétszereztük meg a fajszámot, az index értéke nem nőtt a kétszeresére - ez szembemegy a várakozásunkkal.
A megoldást a Hill-számok jelentik, amelyek a Rényi-diverzitás exponensével egyenlők:
qD = (Σi piq)1/(1-q) = exp(qH)
A Hill-számok az összes előnyös tulajdonsággal bírnak, amivel a Rényi-entrópia, csak könnyebb őket értelmezni. A q paraméter használata is megegyezik azzal, amit utóbbinál láttunk. A qD Hill-számú (ún. q-ad rendű diverzitású) közösség annyira diverz, mint egy olyan hipotetikus közösség, amelyet qD egyforma abundanciájú faj alkot. qD ezért effektív fajszámként vagy fajszám-ekvivalensként értelmezhető. Ezt a fenti példa egyszerűen igazolja, hiszen exp(1,099) = 3,00 és exp(1,792) = 6,00. Az ökológusok az ekvivalens fajszámot "igazi diverzitásnak" ('true diversity') is nevezik. Az Ecology folyóirat 91/7 számában, 2010-ben, jelentek meg fórumcikkek a diverzitás alfa, béta és gamma komponensekre történő felosztásáról. A neves szerzők nem mindenben, de abban megegyeztek, hogy ezt érdemes az effektív fajszámok alapján végezni. Én is roppantul előremutatónak tartom, hogy a diverzitási számolásokat a Shannon-, a Simpson- és a Rényi-indexek helyett Hill-számok formájában adjuk meg, és ezzel tekintsük az effektív fajszámot a diverzitás mértékegységének.
Lássuk, hogyan érjük el ezt az R szoftver segítségével! A fajszámot a vegan csomag specnumber(), a Shannon- és (inverz) Simpson-indexeket a diversity(), a Rényi-entrópiát és a Hill-diverzitást a renyi() parancsa számolja ki.
Megnyitjuk a vegan csomagot:
> require(vegan)
Az adatsorunk egy múlt heti madárgyűrűzésem során fogott fajok egyedeiből áll (EMBSCH = nádi sármány, PHYCOL = csilpcsalpfüzike, PARCAE = kék cinege, PARMAJ = széncinege):
> community<-c(6,3,2,1)
> names(community)<-c("EMBSCH","PHYCOL","PARCAE","PARMAJ")
> community
EMBSCH PHYCOL PARCAE PARMAJ
6 3 2 1
Kiszámoljuk a fajszámot...
> specnumber(community)
[1] 4
majd a Shannon- és az inverz Simpson-indexet:
> diversity(community,index="shannon")
[1] 1.198849
> diversity(community,index="invsimpson")
[1] 2.88
Az 4-es fajszám érthető, a többi elsőre nem sokat mond. Jöjjön a Rényi-entrópia! A q értékét a scales paraméternél kell megadni, a hill paraméterrel pedig beállíthatjuk, hogy Rényi-entrópia vagy Hill-számok formájában kérjük-e az eredményt:
> renyi(community, scales=c(0,1,2), hill=F)
0 1 2
1.386294 1.198849 1.057790
attr(,"class")
[1] "renyi" "numeric"
Vegyük észre, ahogy a Rényi-entrópia a skálaparaméter 0 értékére nem a fajszámot adta, hanem annak a logaritmusát:
> log(specnumber(community))
[1] 1.386294
A skálaparaméter 1-es értéke a Shannon-indexet adja, a 2-es pedig az inverz Simpson logaritmusát:
> log(diversity(community,index="invsimpson"))
[1] 1.05779
Nézzük meg most az effektív fajszámokat (ezúttal több q értékre)!
> q<-c(0,1,2,3,5,10)
> qD<-renyi(community, scales=q, hill=T); qD
0 1 2 3 5 10
4.000000 3.316299 2.880000 2.618615 2.357766 2.159881
attr(,"class")
[1] "renyi" "numeric"
A 0-ad rendű effektív fajszám (a skálaparaméter 0) maga a fajszám. q = 1 esetén a Shannon-index exponensét kaptuk:
> exp(diversity(community,index="shannon"))
[1] 3.316299
A fenti szám azt jelenti, hogy a példaközösség annyira diverz az abundanciák
q = 1-es súlyozású figyelembevétele esetén, mint egy olyan közösség, amelyet 3,3163 egyformán tömeges faj alkot. Természetesen ilyen a valóságban nincs, hiszen a fajszám csak egész szám lehet, ezért fogjuk fel úgy, hogy diverzebb, mint egy 3 faj alkotta közösség, de nem olyan diverz, mint egy 4 fajos.
q = 2-nél az inverz Simpsont kaptuk meg, amely 2,880-fajú, egyenletes abundanciaeloszlású, képzeletbeli közösségével azonos érték.
Tegyük fel, hogy van egy másik közösségünk is, amelyben a fajok egyedszámai közt nincs ekkora különbség, viszont a fajszám kisebb:
> community2<-c(5,4,3)
> names(community2)<-c("EMBSCH","PHYCOL","PARCAE")
> community2
EMBSCH PHYCOL PARCAE
5 4 3
Számoljuk ki az effektív fajszámokat az előzőhöz hasonlóan a második közösségre!
> qD2<-renyi(community2, scales=q, hill=T); qD2
0 1 2 3 5 10
3.000000 2.937493 2.880000 2.828427 2.743538 2.613801
attr(,"class")
[1] "renyi" "numeric"
Most pedig ábrázoljuk mindkét közösség effektív fajszámait a q függvényében!
> plot(NA, type='b', xlab='q', ylab='qD', xlim=c(0,10), ylim=c(1,4))
> points(qD~q, type='b', col='blue', lwd=2)
> points(qD2~q, type='b', col='red', lwd=2)
Az ábrán az látható, hogy q alacsony értékeinél az első közösség (kék) diverzitása a magasabb, q magasabb értékeinél viszont a másodiké (piros). Ez érthető, hiszen az első közösséget 4 faj alkotta, a másodikat 3, viszont a második közösség fajainak egyedszámai közt kisebb különbségek voltak. Mivel a két közösség görbéjének van metszéspontja (q = 2), sokféleség szempontjából nem rendezhetők, nem mondható meg abszolút értelemben, hogy melyiknek nagyobb a diverzitása.
Az effektív fajszámokon alapuló diverzitásszámolás irodalma bőséges és szövevényes. Az alapcikk Hill (1973), de Jost (2006) cikkéből legalább olyan jól megérthető a lényeg. Lou Jostnak van egy nagyon jó honlapja, amin alapos és érthető bevezető olvasható a diverzitásszámolásokhoz, köztük egy fejezettel az effektív fajszámról. Ebben a blogbejegyzésben van egy R-es példa, amely az entrópia nem-lineáris és a Hill-számok lineáris fajszám-függését mutatja be.